\qquad

Related Rates

Date \qquad Period

Solve each related rate problem.

1) Water leaking onto a floor forms a circular pool. The radius of the pool increases at a rate of 4 $\mathrm{cm} / \mathrm{min}$. How fast is the area of the pool increasing when the radius is 5 cm ?
$A=$ area of circle $\quad r=$ radius $t=$ time
Equation: $A=\pi r^{2} \quad$ Given rate: $\frac{d r}{d t}=4 \quad$ Find: $\left.\frac{d A}{d t}\right|_{r=5}$
$\left.\frac{d A}{d t}\right|_{r=5}=2 \pi r \cdot \frac{d r}{d t}=40 \pi \mathrm{~cm}^{2} / \mathrm{min}$
2) Oil spilling from a ruptured tanker spreads in a circle on the surface of the ocean. The area of the spill increases at a rate of $9 \pi \mathrm{~m}^{2} / \mathrm{min}$. How fast is the radius of the spill increasing when the radius is 10 m ?

$$
\begin{aligned}
& A=\text { area of circle } \quad r=\text { radius } \quad t=\text { time } \\
& \text { Equation: } A=\pi r^{2} \quad \text { Given rate: } \frac{d A}{d t}=9 \pi \quad \text { Find: }\left.\frac{d r}{d t}\right|_{r=10} \\
& \left.\frac{d r}{d t}\right|_{r=10}=\frac{1}{2 \pi r} \cdot \frac{d A}{d t}=\frac{9}{20} \mathrm{~m} / \mathrm{min}
\end{aligned}
$$

3) A conical paper cup is 10 cm tall with a radius of 10 cm . The cup is being filled with water so that the water level rises at a rate of $2 \mathrm{~cm} / \mathrm{sec}$. At what rate is water being poured into the cup when the water level is 8 cm ?

$$
\begin{aligned}
& V=\text { volume of material in cone } h=\text { height } t=\text { time } \\
& \text { Equation: } V=\frac{\pi h^{3}}{3} \text { Given rate: } \frac{d h}{d t}=2 \quad \text { Find: }\left.\frac{d V}{d t}\right|_{h=8} \\
& \left.\frac{d V}{d t}\right|_{h=8}=\pi h^{2} \cdot \frac{d h}{d t}=128 \pi \mathrm{~cm}^{3} / \mathrm{sec}
\end{aligned}
$$

4) A spherical balloon is inflated so that its radius (r) increases at a rate of $\frac{2}{r} \mathrm{~cm} / \mathrm{sec}$. How fast is the volume of the balloon increasing when the radius is 4 cm ?

$$
\begin{aligned}
& V=\text { volume of sphere } \quad r=\text { radius } t=\text { time } \\
& \text { Equation: } V=\frac{4}{3} \pi r^{3} \quad \text { Given rate: } \frac{d r}{d t}=\frac{2}{r} \quad \text { Find: }\left.\frac{d V}{d t}\right|_{r=4} \\
& \left.\frac{d V}{d t}\right|_{r=4}=4 \pi r^{2} \cdot \frac{d r}{d t}=32 \pi \mathrm{~cm}^{3} / \mathrm{sec}
\end{aligned}
$$

5) A 7 ft tall person is walking away from a 20 ft tall lamppost at a rate of $5 \mathrm{ft} / \mathrm{sec}$. Assume the scenario can be modeled with right triangles. At what rate is the length of the person's shadow changing when the person is 16 ft from the lamppost?

$$
\begin{aligned}
& x=\text { distance from person to lamppost } \quad y=\text { length of shadow } t=\text { time } \\
& \text { Equation: } \frac{x+y}{20}=\frac{y}{7} \quad \text { Given rate: } \frac{d x}{d t}=5 \quad \text { Find: }\left.\frac{d y}{d t}\right|_{x=16} \\
& \left.\frac{d y}{d t}\right|_{x=16}=\frac{7}{13} \cdot \frac{d x}{d t}=\frac{35}{13} \mathrm{ft} / \mathrm{sec}
\end{aligned}
$$

6) An observer stands 700 ft away from a launch pad to observe a rocket launch. The rocket blasts off and maintains a velocity of $900 \mathrm{ft} / \mathrm{sec}$. Assume the scenario can be modeled as a right triangle. How fast is the observer to rocket distance changing when the rocket is 2400 ft from the ground?

$$
\begin{aligned}
& a=\text { altitute of rocket } \quad z=\text { distance from observer to rocket } t=\text { time } \\
& \text { Equation: } a^{2}+490000=z^{2} \quad \text { Given rate: } \frac{d a}{d t}=900 \quad \text { Find: }\left.\frac{d z}{d t}\right|_{a=2400} \\
& \left.\frac{d z}{d t}\right|_{a=2400}=\frac{a}{z} \cdot \frac{d a}{d t}=864 \mathrm{ft} / \mathrm{sec}
\end{aligned}
$$

