
Chapter 6

Answers, Hints, Solutions

6.1 Limits

1. (a) 20

(b) Does not exist

(c) 0

(d) 100

(e) Does not exist. Con-

sider the domain of g(x) =√
−x2 + 20x− 100 =

√

−(x− 10)2.

2. −8 ln 4

3. 0. Note the exponential function

in the denominator.

4.
3

5
. Divide the numerator and

denominator by the highest power.

5.
5

2

6. 3

7. 2

8. 0. What is the value of

3x+ |1− 3x| if x < 1
3?

9. 1

10.
3√
2

11. −2

3

12. ∞. Note that

x2 − 1 = (x− 1)(x+ 1).

13. −2. Which statement is true for x < 1:

|x− 1| = x− 1 or |x− 1| = 1− x?

14. (a) 1.5

(b) −1.5
(c) No. The left-hand limit and the

right-hand limit are not equal.

15. Does not exist

16.
1

8
. Rationalize the numerator.

17.
1

12
. Note that

x− 8 = ( 3
√
x− 2)(

3
√
x2 + 2 3

√
x+ 4).

18. a = b = 4. Rationalize the numerator.

Choose the value of b so that x becomes
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a factor in the numerator.

19.
1

12
. Note that

x− 8 = ( 3
√
x− 2)(

3
√
x2 + 2 3

√
x+ 4).

20.
1

2
. Rationalize the numerator.

21. −3

2
. Rationalize the numerator.

Note that x→ −∞ and use the

fact that if x < 0 then x = −
√
x2.

22. −1

2

23.
3

2

24. Since the denominator approaches

0 as x→ −2, the necessary

condition for this limit to exist is that

the numerator approaches 0 as x → −2.
Thus we solve 4b− 30+15+ b = 0 to ob-

tain b = 3. lim
x→−2

3x2 + 15x+ 18

x2 + x− 2
= −1.

25. a = 4. Write f(x) = x+
(a− 1)x+ 5

x+ 1
.

26. lim
x→∞

lnx

x
= 0.

27. From lim
x→4

(x+2) = 6 and lim
x→4

(x2− 10) =

6, by the Squeeze Theorem, it follows

that lim
x→4

f(x) = 6.

28. 1

29. From the fact that |sin(1/x)| ≤ 1 for all x 6= 0 and the fact that the function y = ex

is increasing conclude that e−1 ≤ esin(1/x) ≤ e for all x 6= 0. Thus e−1 ·
√
x ≤√

xesin(1/x) ≤ e ·
√
x for all x > 0. By the Squeeze Theorem, lim

x→0+

(√
xesin(1/x)

)

= 0.

30. 0. Squeeze Theorem.

31. 0. Squeeze Theorem.

32. 0. Squeeze Theorem.

33. −∞.

34. 0.

35. ∞.

36.
76

45
. This is the case ”0/0”.

Apply L’Hospital’s rule.

37.
1

2
. Write

1

2
·
(

sinx

x

)100

· 2x

sin 2x
.

38. 7. Write 7 ·
( x

sinx

)101
· sin 7x

7x
.

39. 7.

40.
3

5
. This is the case ”0/0”.

Apply L’Hospital’s rule.

41.
3

5
.

42. 0. Write x2 · x

sinx
· sin

(

1

x2

)

.

43. Does not exist.
sinx

2|x| ·
1

√

sin 4x
4x

.

44.
1

2
. Write

1− cosx

x2
· x

sinx
.

45. 1. Substitute t =
1

x
.

46. 0. This is the case ”∞ − ∞”. Write
x− sinx

x sinx
and apply L’Hospital’s rule.

47.
1

6

48. 0. This is the case ”0 ·∞”. Write
ln sinx

1
sinx

and apply L’Hospital’s rule.
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49. 0. This is the case ”∞/∞”. Apply

L’Hospital’s rule.

50. 0.

51. 0.

52. 0.

53. 1. This is the case ”0/0”. Write
ln(1 + x)

x
and apply L’Hospital’s rule.

54.
3

2
. Use properties of logarithms first.

55.
3

2
.

56. ln 2. The denominator approaches 2.

57. 0, This is the case ”0/0”. Apply

L’Hospital’s rule.

58. − 1

π2

59. ∞. This is the case ”∞−∞”. Write
sinx− x2 cosx

x2 sinx
and apply L’Hospital’s rule.

60. e
1

2 . This is the case ”1∞”. Write e
ln cosh x

x2 . Apply L’Hospital’s rule and use the fact

that the exponential function f(x) = ex is continuous.

61. 1. This is the case ”00”. Write xx = ex lnx = e
ln x

x−1 . Apply L’Hospital’s rule and use

the fact that the exponential function f(x) = ex is continuous.

62. 1.

63. 1.

64. e.

65. 1. This is the case ”∞0”.

66. 1.

67. e3.

68. 0.

69. 1. Write ex ln x

x+1 = ex lnx · e−x ln(x+1)

and make your conclusion.

70. e
1

e .

71. 1.

72. 1. Squeeze Theorem.

73. e−2. Write
(

(1− 2x)−
1

2x

)−2
.

74. e
7

5 . Write
(

(1 + 7x)
1

7x

)
7

5

.

75. e
3

8 . Write
(

(1 + 3x)
1

3x

)
3

8

.

76. e
3

2 . Write

(

(

1 +
x

2

)
2

x

)

3

2

.

77. 10. Use the fact that

L = lim
n→∞

xn

to conclude L2 = 100.

Can L be negative?

78. (a)
1

2
. Write

2 sin2 x
2

x2
, or use

L’Hospital’s rule.

(b) 0.

(c) Does not exist. Note that f(x) =

arcsinx is defined on [−1, 1].

79. (a) Does not exist. Note that

lim
h→0

4
√
16 + h = 2.

(b) − 1

π
. Use L’Hospital’s rule.

(c) 1. Divide the numerator and de-

nominator by u.
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(d) e−2.

(e)
1

2
(f) ∞. Think, exponential vs. polyno-

mial.

80. (a)
1

2
; (b)

7

3
; (c) 1; (d) 0; (e)

sin 3− 3

27
.

81. (a) Does not exist.

Consider lim
x→0

xf(x)

x|x| ; (b)
1

3
;

(c) −1

4
. Note that x < 0; (d) e.

82. (a)
1

4
; (b) −1; (c) 0.

83. (a) −∞; (b) 3; (c) 2; (d) 0.

84. Let ε > 0 be given. We need to find δ = δ(ε) > 0 such that |x−0| < δ ⇒ |x3−0| < ε,

what is the same as |x| < δ ⇒ |x3| < ε. Clearly, we can take δ = 3
√
ε. Indeed. For

any ε > 0 we have that |x| < 3
√
ε⇒ |x|3 = |x3| < ε and, by definition, lim

x→0
x3 = 0.

85. (c) For any ε > 0 there exists δ = δ(ε) > 0 such that |x− 1| < δ ⇒ |2x2 − 2| < ε.

86. lim
h→0

f(x+ h)− f(x− h)

2h
= lim

h→0

f ′(x+ h) + f ′(x− h)

2
and, since f ′ is continuous,

lim
h→0

f ′(x+ h) = lim
h→0

f ′(x− h) = f ′(x).

6.2 Continuity

1. c = π. Solve lim
x→π−

f(x) = lim
x→π−

f(x) for c. See Figure 6.1.

Figure 6.1: c = π

2. Let f(x) = 2x − 10

x
. Note that the domain of f is the set R\{0} and that on its

domain, as a sum of two continuous function, f is continuous.
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(a) Since f is continuous on (0,∞) and since lim
x→0+

f(x) = −∞ and lim
x→∞

f(x) =∞
by the the Intermediate Value Property there is a ∈ (0,∞) such that f(a) = 0.

(b) For all x ∈ (−∞, 0) we have that
10

x
< 0 which implies that for all x ∈ (−∞, 0)

we have that all f(x) > 0.

3. See Figure 6.2.

Figure 6.2: Piecewise Defined Function

(a) (i) False; (ii)True; (b) (i) Yes; (ii) Yes; (c) (i) No; (ii) No.

4. See Figure 6.3.

Figure 6.3: Continuous Function

(a) Check that lim
x→1−

f(x) = lim
x→1+

f(x) = f(1).

(b)
1

2
. Note lim

x→1−

5+x
2 − 3

x− 1
=

1

2
and lim

x→1+

(2 +
√
x)− 3

x− 1
=

1

2
.
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5. f(x) =
x2 − 9

x− 3
if x 6= 3 and f(3) = 0.

6.3 Miscellaneous

1. (a) x =
1− lnπ

lnπ
. (b) x = − log log 2

log 3
.

2. (e, 3) ∪ (3,∞).

3. (a) Give a definition of the limit. (b)

Give a definition of a function contin-

uous at a point. (c) A corner or a

vertical tangent; y = |x|; y = x
1

3 .

6.4 Derivatives

1. (b) f ′(3) = lim
h→0

1
2(3+h)−1 −

1
5

h
= lim

h→0

−2
5(5 + 2h)

= −0.08. (c) lim
h→0

sin7
(

π
6 + h

2

)

−
(

1
2

)7

h
=

d

dx
(sin7

x

2
)

∣

∣

∣

∣

x=π

3

=
7

2
· sin6 π

6
· cos π

6
=

7
√
3

256
.

2. Let |I(x)| ≤ M for all x ∈ R. Then for any h 6= 0,

∣

∣

∣

∣

h2I(h)

h

∣

∣

∣

∣

= |hI(h)|. Use the

Squeeze Theorem to conclude that f is differentiable at x = 0.

3. f ′(2) = lim
x→2

x+ 1
x − 5

2

x− 2
=

3

4
.

4. Since g is not differentiable we cannot use the product rule. f ′(0) = lim
h→0

hg(h)

h
= 8.

5. (b) f ′(4) = lim
h→0

√

5− (x+ h)− 1

h
= −0.5.

6. F ′(0) = lim
h→0

f(h) sin2 h
h

h
= lim

h→0

f(h) sin2 h

h2
= f(0).

7. m = e, b = 0. Solve lim
x→1−

ex = lim
x→1+

(mx+b) and lim
x→1−

ex − e

x− 1
= lim

x→1+

mx+ b− (m+ b)

x− 1
for m and b.

8. (a) S′(3) =
F ′(3)G(3)− F (3)G′(3)

[G(3)]2
= −1

4
. (b) T ′(0) = F ′(G(0)) · G′(0) = 0. (c)

U ′(3) =
F ′(3)

F (3)
= −1

2
.

9. From h(1) = f(1)g(1) and h′(1) = f ′(1)g(1) + f(1)g′(1) it follows that g′(1) = 9.
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10. 2f(g(1)) · f ′(g(1)) · g′(1) = 120. 11. f ′(x) = − 2

(x− 2)2

12. (a) f ′(x) = sec2 x. This follows from tanx =
sinx

cosx
by using the quotient rule.

(b) From g(x) = arctanx, x ∈ R, and f ′(g(x)) · g′(x) = 1, we conclude that

g′(x) = cos2(g(x)). Next, suppose that x > 0 and consider the right triangle

with the hypotenuse of the length 1 and with one angle measured g(x) radians.

Then tan g(x) = tan(arctanx) = x =
sin g(x)

cos g(x)
=

√

1− g′(x)

g′(x)
which implies

that x2 =
1− g′(x)

g′(x)
. Thus g′(x) =

1

1 + x2
.

(c) From g′(x) = 2x secx2 +
2x

1 + x4
it follows that g′

(√
π

2

)

= 2
√

pi+
16
√
π

16 + π2
.

13. f ′(1) = g(1) = 2. 14.
d

dx
(
√
x+ x7)

∣

∣

∣

∣

x=1

=
15

2
.

15. f ′(0) = 0. Note that, for h 6= 0,

∣

∣

∣

∣

∣

h2 sin 1
h

h

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

h sin
1

h

∣

∣

∣

∣

≤ |h|. Use the Squeeze

Theorem.

16. f ′(x) = 2−sinx > 0 for all x ∈ R. Let g(0) = α. Then g′(0) =
1

f ′(g(0))
=

1

2− sinα
.

17. Let f(x) = sinx, x ∈
(

−π

2
,
π

2

)

. Then, for x ∈ (−1, 1), (f−1)′(x) = 1

cos(f−1(x))
.

Suppose that x ∈ (0, 1) and let α = f−1(x). Consider the right triangle with the

hypothenuse of the length 1 and an angle measured α radians. The length of the

leg opposite to the angle α equals sinα = x which implies
d

dx
(sin−1 x) =

1√
1− x2

.

18. Use the chain rule and the given property of f ′(x) to get (1+(f(g(x)))2) ·g′(x) = 1.

19. Write y =
1

2
· (2x2 − 2

√

x4 − 1).

20. 0. Note f(x) = (x+ 2)(x2 + 4).

21. y′ = − 5!

x6
− 25 sin 2x.

22. A = 0, B = 1.

23. Use the chain rule to

differentiate f2 − g2.

24. Use the product rule twice.

25. y′ =

(

3 ln(x+ 2)

x
+

3 lnx

x+ 2
− x

x2 + 1

)

·

(x+ 2)3 lnx

(x2 + 1)1/2
. Use the logarithmic differ-

entiation.

26. y =
2√
x
sinh

√
x · e4 cosh

√
x.

27. From f ′(x) =
2x+ 1

√

1− (x2 + x)2
+5x ln 5 it

follows that f ′(0) = 1 + ln 5.

28. 0. Write as a product.
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29. (a)
3e−3t sinh(e−3t)
√

1− cosh2(e−3t)

(b) y′(u) =
1

3

(

1

u+ 1
+

1

u+ 2
− 2u

u2 + 1
− 2u

u2 + 2

)

·
(

(u+ 1)(u+ 2)

(u2 + 1)(u2 + 2)

)1/3

.

30. y′ =
x(2 lnx+ 1) sinh(arcsin(x2 lnx))

√

1− x4 ln2 x
.

31. y′ = − 4e−4x√
1− e8x

.

32. (a) y′ = −2xecosx2

sinx2.

(b) y′ = x19
(

20 arctanx+
x

1 + x2

)

.

(c) y′ = 2xlnx−1 lnx.

33. (a) y′ =
6e3 ln(2x+1)

2x+ 1
.

(b) y′ = 2x2x(lnx+ 1).

(c) y′ =
e2x

(x2 + 1)3(1 + sinx)5
·

(

2− 6x

x2 + 1
− 5 cosx

1 + sinx

)

.

(d) y′ =
2x+ 2y2

3− 4xy
.

34. (a) y′ = (x coshx+ sinhx)xsinhx.

(b) y′ =
xy + y2 − 1

3xy2 + 3y3 − x2 − xy − 1
.

35. (a) y′ = sec(sinhx) tan(sinhx) coshx.

(b) y′ =
exe−1 − ex

ey − eye−1
.

36. (a) f ′(x) = (6x− 3x2 − 1)e−x.

(b) g′(z) =
z cos

√
z2 + 1√

z2 + 1
.

(c) f ′(x) = xx(lnx+ 1).

(d) h′(y) = −y tan y + 1

2y

√

cos y

y
.

37. (a) f ′(x) =
1− x2

(x2 + 1)2
.

(b) g′(x) =
x

x2 + 1
+ 4 cotx.

38. (a) f ′(x) =
1

2
√
x(1 + x)

.

(b) f ′(x) =
5 sinh(5 lnx)

x
.

39. (a) f ′(x) = 3 · 103x · ln 10.
(b) f ′(x) = x9(10 tanhx+ x sech2x).

(c) f ′(x) =
(cosx

x
− sinx lnx

)

xcosx.

40. (a) f ′(x) = (2 lnx+ 1)xx
2+1.

(b) f ′(x) = −3 tan 3x.

41. (a) f ′(x) =
(5− x)(x− 1)

(x+ 1)4
.

(b) f ′(x) = 22x+1 ln 2− 4x
3 3
√
x2+1

.

(c) f ′(x) = 4x tan(x2) · sec2 x2.

(d) f ′(x) =

(

lnx

1 + x2
+

arctanx

x

)

·

xarctanx.

(e) f ′′′(x) = 8 cosh(2x).

42. (a) f ′(x) = 5 + 5x4 + 5x ln 5 +
1

5
5
√
x4

.

(b) y′ = x9(10 tanhx+ x sech2x).

(c) y′ =
( cosx

x lnx
− sinx ln lnx

)

·
(lnx)cosx.

43. (a) f ′(x) = cothx.
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(b) f ′(x) = (cosx− x sinx)ex cosx.

(c) f ′(x) =
1 + cosx

(1 + cosx)2
.

(d) f ′(x) = (lnx+ 1)xx.

44. (a) f ′(x) =
3

x4
.

(b) f ′(x) = 2x sin2(2x2) +

8x3 sin(2x2) cos(x2).

(c) f ′(x) =

(

ln(x+ 2) +
x

x+ 2

)

(x +

2)x.

45. (a) y′ =
x sec

√
x2 + 1 tan

√
x2 + 1√

x2 + 1
.

(b) y′ =

(

ex lnx+
ex

x

)

xe
x

.

46. (a) y′ = 3x2 + 3x ln 3 + 3(lnx+ 1)x3x.

(b) y′ = −(e−2x + 4e−8x).

(c) y′ =
y + x

x− y
.

(d) y′ =

(

5

x
+ 3x2 +

2x

3(x2 + 1)
− 4

x+ 1

)

·

x5ex
3 3
√
x2 + 1

(x+ 1)4
.

47. (a) f ′(x) =
1

sec(x2 + 7x)
·

(

2x− 3

x2 − 3x+ 8
− (2x+ 7)·

ln(x2 − 3x+ 8) tan(x2 + 7x)
)

.

(b) f ′(x) =
2 sinh(2x− 3)

1 + cosh2(2x− 3)

(c) f ′(x) = −3e3x−4 sin(e3x−4).

(d) f ′(x) =

(

(x−1 + 2x) ln tanx+
lnx+ x2

sinx cosx

)

·

(tanx)lnx+x2

.

(e) f ′(x) = 0.

48. (a) h′(t) = −1

3
sec2

(

t

3

)

· e− tan( t

3)

(b) y′ = − 3

8x ln2 x

(

1

2 lnx

)−1/4
.

Note that y =

(

1

2 lnx

)3/4

.

(c) f ′(y) =
ln 3

ln 7 ·
√

1− y2 · arcsin y
·

3log7(arcsin y)

49. (a) f ′(x) =
2x+ 1

√

1− (x2 + x)2
+ 5x ln 5.

(b) g′(x) = − 3x2 + 4x+ 3

2
√
x+ 1(x2 − 3)2

sinh

(
√
x+ 1

x2 − 3

)

.

50. (a) f ′(x) =
2x(e4x + a) ln 2− 4e4x sinh−1(2x)

√
22x + 1

(e4x + a)2
√
22x + 1

.

(b) g′(x) = g(x) ·
(

− 6x sin(3x2)

2 + cos(3x2)
+ π − 3

2

)

. (Use logarithmic differentiation.)

51. (a)
d2y

dx2
= − 4x3

(1 + x4)2
(b) y′ =

1

2
x
√
x− 1

2 ln(e2x)
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6.5 Related Rates

1. Let x = x(t) be the distance between the bottom of the ladder and the wall. It is

given that, at any time t,
dx

dt
= 2 ft/s. Let θ = θ(t) be the angle between the top of

the ladder and the wall. Then sin θ =
x(t)

15
. It follows that cos θ · dθ

dt
=

1

15

dx

dt
. Thus

when θ =
π

3
the rate of change of θ is given by

dθ

dt
=

4

15
ft/s.

2. Let x = x(t) be the distance between the foot of the ladder and the wall and

let y = y(t) be the distance between the top of the ladder and the ground. It

is given that, at any time t,
dx

dt
=

1

2
m/min. From x2 + y2 = 144 it follows that

x·dx
dt

+y
dy

dt
= 0. Thus when x(t) = 4 we have that y(t) = 8

√
2 and 4·1

2
+8
√
2
dy

dt
= 0.

The top of the ladder is falling at the rate
dy

dt
= −

√
2

8
m/min.

3. Let x = x(t) be the hight of the rocket at time t and let y = y(t) be the distance

between the rocket and radar station. It is given that, at any time t, x2 = y2 − 16.

Thus, at any time t, x · dx
dt

= y
dy

dt
. At the instant when y = 5 miles and

dy

dt
= 3600

mi/h we have that x = 3 miles and we conclude that, at that instant, 3
dx

dt
= 5 ·3600.

Thus the vertical speed of the rocket is v =
dx

dt
= 6000 mi/h.

4. Let x = x(t) be the distance between the dock and the bow of the boat at time t

and let y = y(t) be the length of the rope between the pulley and the bow at time

t. It is given that
dy

dt
= 1 m/sec. From x2 + 1 = y2 it follows that

dx

dt
=

y

x
m/sec.

Since y = 10 implies x =
√
99 we conclude that when 10 m of rope is out then the

boat is approaching the dock at the rate of
10√
99

m/sec.

5. From y = 5 tan θ we get that, at any time t,
dy

dt
= 5 sec2 θ

dθ

dt
. At the instant when

θ =
π

3
radians we have that v =

dy

dt
= 5 · sec2 π

3
· 2 = 40 m/s.

6. After time t (in hours) the plane is 480t km away from the point directly above

the observer. Thus, at time t, the distance between the observer and the plane is

D =
√

32 + (480t)2. We differentiate D2 = 9 + 230, 400t2 with respect to t to get

2D
dD

dt
= 460, 800t. Since 30 sec =

1

120
hours it follows that the distance between

the observer and the plane after 30 seconds equals D = 5 km. Thus, 30 seconds

later the distance D from the observer to the airplane is increasing at the rate of
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dD

dt

∣

∣

∣

∣

t= 1

120

= 384 km/h.

7. Let y be the distance between the airplane and the radar station. Then, as the

hypothenuse in a right angle triangle with the angle θ and the opposite leg of length

1000 m, y =
1000

sin θ
. Since it is given that

dθ

dt
= −0.1 rad/sec, it follows that

dy

dt
= −1000 cos θ

sin2 θ
· dθ
dt

=
100 cos θ

sin2 θ
m/sec. Hence if θ =

π

4
, the speed of the plane is

given by
dy

dt

∣

∣

∣

∣

t=π

4

= 100
√
2 m/sec.

8. (a) From z2 = 64 + 4t2 it follows that 2zz′ = 8t. If z = 10 then t = 3 and at that

instant z′ = 1.2 m/s. (b) Since the height of the kite after t seconds is 2t meters,

it follows that tanx =
2t

8
. Thus

x′

cos2 x
=

1

4
. If y = 6 then t = 3 and tanx =

3

4
.

It follows that cosx =
4

5
and at that instant the rate of change of x is given by

x′ = x′(3) =
4

25
m/s.

9. Let x = x(t) be the distance (in metres) between the boy and the balloon at time

t. Then [x(t)]2 = (8t)2 + (36 + 4t)2. From 2x(t)x′(t) = 128t + 8(36 + 4t). From

x(3) = 24
√
5 m, it follows that x′(3) =

16√
5
m/sec.

10. Let θ = θ(t) be the elevation angle. From tan θ =
2t

80
it follows that

dθ

dt
=

cos2 θ

40
.

When t = 30 we have tan θ =
3

4
and cos θ =

4

5
. Thus when the helicopter is 60 m

above the ground the elevation angle of the observer’s line of sight to the helicopter

is changing at the rate
1

50
m/s.

11. Let r denotes the radius of the circular containment area. It is given that
dr

dt
= −5

m/min. From the fact that the area at time t is given by A = r2π, where r = r(t),

it follows that
dA

dt
= 2rπ

dr

dt
= −10rπ m2/min. Hence when r = 50m then the area

shrinks at the rate of 10 · 50 · π = 500π m2/min.

12. Let x = x(t) be the edge length. Then the volume is given by V = x3 and the

surface area is given by S = 6x2. It is given that
dV

dt
= 10. This implies that

3x2
dx

dt
= 10 at any time t and we conclude that at the instant when x = 8 the edge

is increasing at the rate
5

96
cm/min. This fact together with

dS

dt
= 12x

dx

dt
implies
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that at the instant when x = 8 the surface area is increasing at the rate 12 ·8 · 5
96

= 5

cm2/min.

13. LetH = H(t) be the height of the box, let x = x(t) be the length of a side of the base,

and V = V (t) = Hx2. It is given that
dH

dt
= 2 m/s and

dV

dt
= 2x

dx

dt
H+x2

dH

dt
= −5

m3/s. The question is to find the value of
dx

dt
at the instant when x2 = 64 m2 and

H = 8 m. Thus, at that instant, one of the sides of the base is decreasing at the

rate of
133

128
m/s.

14. Let H = H(t) be the height of the pile, let r = r(t) be the radius of the base, and

let V = V (t) be the volume of the cone. It is given that H = r (which implies that

V =
H3π

3
) and that

dV

dt
= H2π

dH

dt
= 1 m3/sec. The question is to find the value

of
dH

dt
at the instant when H = 2. Thus at that instant the sandpile is rising at the

rate of
1

4π
m/sec.

15. Let H = H(t) be the height of water, let r = r(t) be the radius of the surface of

water, and let V = V (t) be the volume of water in the cone at time t. It is given

that r =
3H

5
which implies that V =

3H3π

25
. The question is to find the value of

dH

dt
at the instant when H = 3 and

dV

dt
= −2 m3/sec . Thus at that instant the

water level dropping at the rate of
50

81π
m/sec.

16. The distance between the boy and the girl is given by z =
√

x2 + y2 where x = x(t)

and y = y(t) are the distances covered by the boy and the girl in time t, respectively.

The question is to find z′(6). We differentiate z2 = x2 + y2 to get zz′ = xx′ − yy′.

From x(6) = 9, y(6) = 12, z(6) = 15, x′(t) = 1.5, and y′(t) = 2 it follows that

z′(6) = 2.5 m/s.

17. The distance between the two ships is given by z =
√

x2 + (60− y)2 where x = x(t)

and y = y(t) are the distances covered by the ship A and the ship B in time t,

respectively. The question is to find z′(4). We differentiate z2 = x2 + (60 − y)2 to

get zz′ = xx′ − (60 − y)y′. From x(4) = 60, y(4) = 49, z(4) = 61, x′(t) = 15, and

y′(t) = 12.25 it follows that z′(4) =
765.25

61
≈ 12.54 miles/hour.

18. Let the point L represents the lighthouse, let at time t the light beam shines on the

point A = A(t) on the shoreline, and let x = x(t) be the distance between A and P .

Let θ = θ(t) be the measure in radians of ∠PLA. It is given that x = 3 tan θ and
dθ

dt
= 8π radians/minute. The question is to find

dx

dt
at the instant when x = 1.
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First we note that
dx

dt
= 3 sec2 θ

dθ

dt
. Secondly, at the instant when x = 1 we have

that tan θ =
1

3
which implies that cos θ =

3√
10

. Hence, when shining on a point

one kilometer away from P , the light beam moving along the shoreline at the rate

of
80π

3
km/min.

19. Let x = x(t) be the distance between the police car and the intersection and let

y = y(t) be the distance between the SUV and the intersecetion. The distance

between the two cars is given by z =
√

x2 + y2. The question is to find the value

of
dy

dt
at the instant when x = 0.6 km, y = 0.8 km,

dz

dt
= 20 km/hr, and

dx

dt
= −60

km/hr. We differentiate z2 = x2 + y2 to get z
dz

dt
= x

dx

dt
+ y

dy

dt
. Since, at the given

instance, z = 1, we have that
dy

dt
= 70 km/hr.

6.6 Tangent Lines and Implicit Differentiation

1. Solve y′ = coshx = 1. The point is (0, 0).

2. Solutions of −a3 = 3a2(4 − a) are a = 0 and a = 6. The points are (0, 0) and

(6, 216).

3. (a) −π

4
, (b) y =

√
2x+ 1− π

4
.

4. y = x− 1

5. We note that y′ = 3(x− 1)2. Two lines, none of them horizontal, are perpendicular

to each other if the product of their slopes equals −1. Thus to find all points on

the curve C with the property that the tangent line is perpendicular to the line L

we solve the equation −1

3
· 3(x − 1)2 = −1. Hence x = 0 or x = 2. The lines are

y = 3x− 1 and y = 3x− 5.

6. From ey·
(

dy

dx
· ln(x+ y) +

1 + dy
dx

x+ y

)

= −
(

y +
dy

dx

)

·sin(xy) it follows that dy

dx

∣

∣

∣

∣

x=1

=

−1.
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Figure 6.4: y = (x− 1)3 and 3y = x

7.
dy

dx
=

y − x4

y4 − x

8. y lnx = x ln y
dy

dx
· lnx+

y

x
= ln y +

x

y
· dy
dx

dy

dx
=

y(x ln y − y)

x(y lnx− x)

9.
dy

dx
=

3x ln 3 + sinh y

ey − x cosh y

10.
dy

dx
=

coshx− 2xy

x2 − sin y

11.
dy

dx
=

1− y(x− y)

1 + (x− y)(x+ 3y2)

12. (a) x + y = 0; (b) The graph crosses the x-axis at the points (±
√
3, 0). The claim

follows from the fact that 2x−y−xy′+2yy′ = 0 implies that if x = ±
√
3 and y = 0

then y′ = 2.

13. x+ y = π.

14. y = 0.

15. y′(3) =
10

21
.

16.
4

3

17. (a)
dy

dx
= − 2xy

x2 + 2ay
; (b) We solve the system of equations 1+a = b, − 2

1 + 2a
= −4

3

to get a =
1

4
and b =

5

4
.

18. From
dy

dx
= −

√

y

x
we get that the tangent line l to the curve at any of its points

(a, b) is given by y−b = −
√

b
a(x−a). The sum of the x-intercept and the y-intercept

of l is given by (a+
√
ab) + (b+

√
ab) = (

√
a+

√
b)2 = k.

19. From
2

3 3
√
x
+

2y′

3 3
√
y
= 0 we conclude that y′ = − 3

√

y

x
. Thus the tangent line through

the point (a, b) on the curve is given by y− b = − 3

√

b

a
(x−a). Its x and y intercepts
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are
(

a+
3
√
ab2, 0

)

and
(

0, b+
3
√
a2b

)

. Thus the square of the portion of the tangent

line cut off by the coordinate axis is
(

a+
3
√
ab2

)2
+

(

b+
3
√
a2b

)2
= a2 + 2a

3
√
ab2 +

b
3
√
a2b+ b2 + 2b

3
√
a2b+ a

3
√
ab2 =

(

3
√
a2 +

3
√
b2
)3

= 93. The length of the portion is
√
93 = 27.

20. y + 4 =
3

4
(x− 8).

21. (a) (0, 0), (0,±2). (b) y′ = x(2x2 − 5)

2y(y2 − 2)
. (c) x =

√
5.

22. (a) y = 3x− 9; (b) y(2.98) ≈ 3 · 2.98− 9 = −0.06

23. (a) y′(4) = 4, y”(4) = −11; (b) y(3.95) ≈ −0.2; (c) Since the curve is concave down,
the tangent line is above the curve and the approximation is an overestimate.

6.7 Curve Sketching

1. (a) From f ′(x) = 12x2(x− 2) we conclude that f ′(x) > 0 for x > 2 and f ′(x) < 0

for x < 2. So f is increasing on (2,∞) and decreasing on (−∞, 2).

(b) From f”(x) = 12x(3x − 4) it follows that f”(x) > 0 for x < 0 or x >
4

3
and

f”(x) < 0 for x ∈
(

0,
4

3

)

. Also f”(x) = 0 for x = 0 and x =
4

3
. Thus f is

concave upward on (−∞, 0) and on

(

4

3
,∞

)

and concave downward on

(

0,
4

3

)

(c) Critical numbers are x = 0 and x = 2. Since f ′(x) does not change sign at

x = 0 there is no local maximum or minimum there. (Note also that f”(0) = 0

and that the second derivative test is inconclusive.) Since f ′(x) changes from

negative to positive at x = 2 there is a local minimum at x = 2. (Note also

that f”(2) > 0, so second derivative test says there is a local minimum.)

(d) Inflection points are (0, 10) and

(

4

3
, f

(

4

3

))

.

(e) lim
x→±∞

f(x) =∞.

For the graph see Figure 6.5.
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Figure 6.5: f(x) = 3x4 − 8x3 + 10

2. (a) From x2−9 > 0 it follows that the domain of the function f is the set (−∞,−3)∪
(3,∞). (b) The function is not defined at x = 0, so there is no the y-intercept.

Note that f(x) 6= 0 for all x in the domain of f . (c) From lim
x→∞

f(x) = 1 and

lim
x→−∞

f(x) = −1 we conclude that there are two horizontal asymptotes, y = 1 (when

x→∞) and y = −1 (when x→ −∞). From lim
x→3+

f(x) = 0 and lim
x→−3−

f(x) = −∞
it follows that there is a vertical asymptote at x = −3. (d) Since, for all x in the

domain of f , f ′(x) =
3(x− 3)

(x2 − 9)3/2
6= 0 we conclude that there is no critical number

for the function f . (e) Note that f ′(x) > 0 for x > 3 and f ′(x) < 0 for x < −3. Thus
f increasing on (3,∞) and decreasing on (−∞,−3). (f) Since the domain of f is

the union of two open intervals and since the function is monotone on each of those

intervals, it follows that the function f has neither (local or absolute) a maximum

nor a minimum. (g) From f ′′(x) = −6(x− 3)(x− 3
2)

(x2 − 9)5/2
it follows that f ′′(x) < 0 for

all x in the domain of f . Therefore f(x) is concave downwards on its domain. For

the graph see Figure 6.6.

3. (a) The domain of the function f is the set R\{0}. The x-intercepts are ±1. Since
0 not in domain of f there is no y-intercept. (b) From lim

x→0−
f(x) = −∞ and

lim
x→0+

f(x) = ∞ it follows that the vertical asymptote is the line x = 0. Since

lim
x→±∞

f(x) = lim
x→±∞

(

x− 1

x

)

= ±∞ we conclude that there is no horizontal asymp-

tote. Finally, the fact f(x) = x− 1

x
implies that f has the slant (oblique) asymptote

y = x. (c) For all x ∈ R\{0}, f ′(x) = x2 + 1

x2
> 0 so the function f is increasing on
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Figure 6.6: f(x) =
x− 3√
x2 − 9

(−∞, 0) and on (0,∞). The function f has no critical numbers and thus cannot have

a local maximum or minimum. (d) Since f ′′(x) = − 2

x3
it follows that f ′′(x) > 0

for x < 0 and f ′′(x) < 0 for x > 0. Therefore f is concave upward on (−∞, 0) and

concave downward on (0,∞). There are no points of inflection. (e) See Figure 6.7.

Figure 6.7: f(x) =
x2 − 1

x

4. f(x) = x3 − 2x2 − x+ 1, f ′(x) = 3x2 − 4x− 1, f ′′(x) = 6x− 4. See Figure 6.8.

5. See Figure 6.9.
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Figure 6.8: f(x) = x3 − 2x2 − x+ 1 on the interval [−1, 3]

Figure 6.9: f(x) =
x2 − 2

x4

6. See Figure 6.10.

7. See Figure 6.11.

8. See Figure 6.12.
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Figure 6.10: f(x) =
1

(1 + ex)2

Figure 6.11: f(x) =
x2 − 4x

(x+ 4)2

9. Note that the domain of the given function is the set of all real numbers. The

y-intercept is the point (0, 0) and the x-intercepts are (−4, 0) and (0, 0). From

y′ =
4

3
x1/3

(

1

x
+ 1

)

we conclude that y′ is not defined at x = 0 and that y′ = 0 if

x = −1. Thus the critical numbers are x = −1 and x = 0. Also y′ < 0 on (−∞,−1)
and y′ > 0 on (−1, 0)∪ (0,∞). Hence the function has a local minimum at x = −1.
Note that the y-axis is a vertical asymptote to the graph of the given function. From

y′′ =
4

9
x−5/3(x− 2) it follows that y′′(x) > 0 on (−∞, 0) ∪ (2,∞ and y′′(x) < 0 on

(0, 2). Points of inflection are (0, 0) and (2, 6 · 21/3). See Figure 6.13.

10. Note that the given function is a product of a power function y = x2/3 and a linear

function y =
5

2
− x that are both continuous on R. See Figure 6.14.
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Figure 6.12: f(x) =
4− 4x

x2

Figure 6.13: y = 4x1/3 + x4/3

11. The domain is the interval (0,∞). Note that lim
x→0+

xx = 1 and lim
x→∞

xx =∞. From

y′ = xx(lnx + 1) we get that the critical number is x =
1

e
. By the first derivative

test there is a local minimum there. Also, y′′ = xx[(lnx+1)2 + 1
x ]. See Figure 6.15.

12. See Figure 6.16.

13. (a) (0, 0), (3, 9e2); (b) Increasing on (−∞, 3) and decreasing on (3,∞). A local

(global) maximum at (3, 9e2). The other critical point is neither local maximum
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Figure 6.14: y = x2/3(
5

2
− x)

Figure 6.15: y = xx

nor local minimum. (c) Note that x2 − 6x+ 6 = (x− (3−
√
3))(x− (3 +

√
3)). The

function is concave up on (0, 3−
√
3) and (3+

√
3,∞) and concave down on (−∞, 0)

and (3 −
√
3, 3 +

√
3). The inflection points are (0, 0), (3 −

√
3, (3 −

√
3)3e2+

√
3),

and (3+
√
3, (3+

√
3)3e2−

√
3). (d) lim

x→−∞
f(x) = −∞, lim

x→∞
f(x) = 0. (e) See Figure

6.17.

14. See Figure 6.18.

15. Note lim
x→0−

f(x) = 0, lim
x→0+

f(x) =∞ and lim
x→±∞

f(x) = 1. See Figure 6.19.
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Figure 6.16: f(x) =
x2 + 2

x2 − 4

16. (a) y=0. (b) f is increasing on (−∞, 0) and decreasing on (0,∞). (c) Local maxi-

mum at x = 0. (d) Concave up on (−∞,−2) and (2,∞), concave down on (−2, 2).
(e) Inflection points at x = ±2.

17. See Figure 6.20.

18. See Figure 6.21.

19. Note that the function is defined on R, but that the domain of its derivative is

R\{0}. See Figure 6.22.

20. See Figure 6.23.

21. See Figure 6.24.

22. It is given that the y-intercept is the point (0,−3). Note that the given function has

a vertical asymptote x = 3 and two horizonatal asymtotes, y = −1, when x→ −∞,

and y = 2, when x→∞. Also, the function f is decreasing on (−∞, 3) and (3,∞).

Finally, f is concave upwards on (3,∞) and concave downwards on (−∞, 3). See

Figure 6.25.
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Figure 6.17: f(x) = x3e−x+5

Figure 6.18: f(x) = x2e−x

23. (a) The graph has a vertical asymptote y = 0 and a horizontal asymptote x = −2.
The following table summarizes the rest of the given information.

Interval (−4,−1) (−1, 0) (0, 2) (2, 4) (4,∞)

Monotonity Decreasing Increasing Increasing Decreasing Decreasing

Concavity Downwards Upwards Downwards Downwards Upwards

(b) There are two points of inflection, x = −1 and x = 4. We note that x = −1 is

also a critical number and that by the first derivative test there is a local minimum at

x = −1. If f”(−1) = 0, then f ′(−1) exists and f ′(−1) = 0. This would imply that

at this point the graph of f is above the tangent line at x = −1 which contradicts
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Figure 6.19: f(x) = e
1

x

Figure 6.20: f(x) =
18(x− 1)

x2

the fact that the curve crosses its tangent line at each inflection point. It follows

that f ′(−1) does not exist and therefore f”(−1) does not exist.

For a graph see Figure 6.26.

24. (a)
√
: r, s, g; (b)

√
: r, s, f , g; (c)

√
: r; (d)

√
: g; (e)

√
: r.

25. (a)
√
: C, D; (b)

√
: A; (c)

√
: A, D; (d)

√
: A, B, C, D; (e)

√
: B.

26. a = −3, b = 7. Solve the system y(1) = a+ b+ 2 = 6 and y”(1) = 6 + 2a = 0.



6.8. OPTIMIZATION 117

Figure 6.21: f(x) =
x+ 3√
x2 + 1

Figure 6.22: f(x) = (5− 2x)x
2

3

6.8 Optimization

1. Note that the function f is continuous on the closed interval [−1, 2]. By the In-

termediate Value Theorem the function f attains its maximum and minimum val-

ues on [−1, 2]. To find those global extrema we evaluate and compare the val-

ues of f at the endpoints and critical numbers that belong to (−1, 2). From

f ′(x) = 6x − 9 = 3(2x − 3) we conclude that the critical number is x =
3

2
. From

f(−1) = 12, f(2) = −6, and f

(

3

2

)

= −27

4
we conclude that the maximum value

is f(−1) = 12 and the minimum value is f

(

3

2

)

= −27

4
.

2. The global minimum value is f(−4) = f(2) = −21, and the global maximum value

is f(6) = 139. Note that f(2) = −21 is also a local minimum and that f(−2) is a
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Figure 6.23: f(x) =
x

x2 − 1

local maximum. (Reminder: By our definition, for x = c to be a local extremum

of a function f it is necessary that c is an interior point of the domain of f . This

means that there is an open interval I contained in the domain of f such that c ∈ I.)

3. From f ′(x) = axa−1(1− x)b− bxa(1− x)b−1 = xa−1(1− x)b−1(a− (a+ b)x) and the

fact that a and b are positive conclude that x =
a

a+ b
∈ (0, 1) is a critical number

of the function f . Since f(0) = f(1) = 0 and f(x) > 0 for all x ∈ (0, 1) it follows

that the maximum value of f is f

(

a

a+ b

)

=

(

a

a+ b

)a ( b

a+ b

)b

.

4. From f(x) =

{

3x− 5 if x ≥ 5
3

−3x+ 5 if x < 5
3

we conclude that f ′(x) =

{

3 if x > 5
3

−3 if x < 5
3

.

Thus, for x 6= 5

3
, f ′(x) 6= 0 and the derivative of f is not defined at x =

5

3
. We

conclude that the only critical number of the function f on the interval [−3, 2] is
x =

5

3
. Clearly, f

(

5

3

)

= 0. From f(−3) = 14 and f(1) = 2 it follows that the global

and local minimum is f

(

5

3

)

= 0 and that the global maximum is f(−3) = 14.

5. The question is to find the minimum value of the function f(x) = x2 + (12 − x)2,

x ∈ (0, 12). From f ′(x) = 4(x− 6) it follows that x = 6 is the only critical number.

From f”(6) = 4 > 0, by the second derivative test, it follows that f(6) = 72 is the

minimum value of the function f .

6. Note that f(0) = f(1) = 0 and that f(x) > 0 for x ∈ (0, 1). Thus by the Inter-

mediate Value Theorem there is c ∈ (0, 1) such that f(c) is the maximum value

of f . Since f is differentiable on (0, 1), c must be a critical point. Note that

f ′(x) = xa−1(1− x)b−1(a− (a+ b)x). Since a and b are both positive we have that
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Figure 6.24: f(x) =
x3 − 2x

3x2 − 9

x =
a

a+ b
∈ (0, 1). Thus x =

a

a+ b
is the only critical point of the function f in

the interval (0, 1) and f

(

a

a+ b

)

=
aabb

(a+ b)a+b
is the maximum value.

7. The distance between a point (x, y) on the curve and the point (0,−3) is
d =

√

(x− 0)2 + (y − (−3))2 =
√

y4 + (y + 3)2. The question is to minimize the

function f(y) = y4 + (y+ 3)2, y ∈ R. From f ′(y) = 2(2y3 + y+ 3) = 2(y+ 1)(2y2 −
2y+3)we conclude that y = −1 is the only critical number of the function f . From

f”(−1) = 10 > 0, by the second derivative test we conclude that f(−1) = 5 is the

(local and global) minimum value of f . Thus the closest point is (−1,−1).

8. Let x be the radius of the circle. The question is to minimize the function f(x) =

πx2+

(

40− 2πx

4

)2

, x ∈
(

0,
20

π

)

. (We are given that there are TWO pieces.) The

only critical number of the function f is x =
20

π + 4
. To minimize the total area the

two pieces should be of the length
40π

π + 4
and

160

π + 4
.

9. x = 3 and y = 2. The question is to minimize the function f(x) = x2 +
3(7− x)2

4
,

x ∈ (0, 7). (We are given that there are TWO pieces.) The critical point is x = 3.

10. The question is to maximize the function f(x) =
x2
√
3

36
+
(4− x)2

16
, x ∈ [0, 4]. Note

that f”(x) > 0 for x ∈ (0, 4) and conclude that the maximum value must occur at



120 CHAPTER 6. ANSWERS, HINTS, SOLUTIONS

Figure 6.25: Two Horizontal Asymptotes

Figure 6.26: Discontinuity at x = 0

x = 0 and/or x = 4. Since f(4) < f(0), the maximum total area is obtained if only

the square is constructed.

11. A rectangle with sides parallel to the coordinate axes is to be inscribed in the region

enclosed by the graphs of y = x2 and y = 4 so that its perimeter has maximum

length.

(a) See Figure 6.27.

(b) P = 4a+ 2(4− a2) = 2(4 + 2a− a2), a ∈ (0, 1).

(c) From
dP

da
= 4(1−a) it follows that a = 1 is the only critical number. The fact

that f”(a) = −8 < 0 for all a ∈ (0, 1) implies, by the second derivative test,

that P (1) is the maximum value.

(d) P (1) = 10.
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Figure 6.27: Rectangle insribed in the region y = 4 and y = x2

12. Let (x, 0) be the bottom right vertex of the rectangle. The question is to maximize

f(x) = 2x(12− x2), x ∈ (0, 2
√
3). The only critical number is x = 2. The length of

the rectangle with the largest area is 4 and its height is 8.

13. Let x be the length of one side of the fence that is perpendicular to the wall. Note

that the length of the side of the fence that is parallel to the wall equals 400 − 2x

and that this number cannot be larger than 100.The question is to maximize the

function f(x) = x(400 − 2x), x ∈ [150, 400) . The only solution of the equation

f ′(x) = 4(100−x) = 0 is x = 100 but this value is not in the domain of the function

f . Clearly f ′(x) < 0 for x ∈ [150, 400) which implies that f is decreasing on its

domain. Therefore the maximum area that can be enclosed is f(150) = 15000 ft2.

14. L = 15
√
3. To minimize L2 = (x + 5)2 + y2, use the fact that

x

10
√
2
=

x+ 5

y
and

the first derivative.

15. Let (x, y) =

(

x,
b

a

√

a2 − x2
)

be the upper right vertex of the rectangle. The

question is to maximize the function f(x) =
4b

a
x
√

a2 − x2, x ∈ (0, a). From f ′(x) =

4b

a

a2 − 2x2√
a2 − x2

we conclude that the only critical number is x =
a√
2
. By the first

derivative test, there is a local maximum at this critical number. Since lim
x→0+

f(x) =

lim
x→a−

f(x) = 0, it follows that f

(

a√
2

)

= 2ab is the maximum value of the function

f . Thus to maximize the area of the soccer field its length should be a
√
2 and its

width should be b
√
2.

16. Let a be the length of the printed material on the poster. Then the width of this

area equals b =
384

a
. It follows that the length of the poster is x = a + 8 and the
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width of the poster is y = b + 12 =
384

a
+ 12. The question is to minimize the

function f(a) = xy = (a+8)

(

384

a
+ 12

)

= 12

(

40 + a+
256

a

)

. It follows that the

function has a local minimum at a = 16. The dimensions of the poster with the

smallest area are x = 24 cm and y = 36 cm.

17. (
√
15 + 2)× (2

√
15 + 4).

18. Let P be the point on the shore where Maya lands her boat and let x be the

distance from P to the point on the shore that is closest to her initial position.

Thus to reach the village she needs to row the distance z =
√
4 + x2 and run the

distance y = 6 − x. Time needed to row the distance z is given by T1 =
z

2
and

time she needs to run is T2 =
y

5
. Therefore the question is to minimize the function

T = T (x) = T1 + T2 =

√
4 + x2

2
+

6− x

5
, x ∈ [0, 6]. From f ′(x) =

x

2
√
4 + x2

− 1

5
it

follows that the only critical number is x =
4

3
. From T (0) =

11

5
= 2.2, T (6) =

√
10,

and T

(

4

3

)

≈ 2.135183758 it follows that the minimum value is T

(

4

3

)

. Maya

should land her boat
4

3
km from the point initially nearest to the boat.

19. (a) Let y be the height of the box. Then the surface area is given by S = 2x2+4xy.

From S = 150 it follows that y =
1

2

(

75

x
− x

)

. Therefore the volume of the

box is given by V = V (x) =
x

2

(

75− x2
)

.

(b) From the fact that y =
1

2

(

75

x
− x

)

> 0 it follows that the domain of the

function V = V (x) is the interval [1, 5
√
3).

(c) Note that
dV

dx
=

3

2
(25 − x2) and that

d2V

dx2
= −3x < 0 for all x ∈ (1, 5

√
3).

Thus the maximum value is V (5) = 125 cube units.

20. (a) Note that y =
10

x2
. The cost function is given by C(x) = 5x2 + 2 · 4 · x · 10

x2
=

5x2 +
80

x
, x > 0.

(b) 2× 2× 5

2
. The minimum cost is C(2) = $60.

21. Let x be the length and the width of the box. Then its height is given by y =
13500

x2
.

It follows that the surface area is S = x2 +
54000

x
cm2, x > 0. The question is to
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minimize S. From
dS

dx
= 2x − 54000

x2
and

d2S

dx2
= 2 +

3 · 54000
x3

> 0 for all x > 0 it

follows that the function S has a local and global minimum at x = 30.

22. We need to maximize the area of the trapezoid with parallel sides of lengths a = 2

and c = 2 + 2 · 2 cos θ = 2 + 4 cos θ and the height h = 2 sin θ. Thus we maximize

the function A = A(θ) =
2 + (2 + 4 cos θ)

2
· 2 sin θ = 4(sin θ + sin θ cos θ), θ ∈ (0, π).

From
dA

dθ
= 4(cos θ+cos2 θ−sin2 θ) = 4(2 cos2 θ+cos θ−1) = 4(2 cos θ−1)(cos θ+1)

we obtain the critical number θ =
π

3
. The First Derivative Test confirms that θ =

π

3
maximizes the cross sectional area of the trough.

23. Let r be the radius of the base of a cylinder inscribed in the cone and let h be its

height. From
H

R
=

h

R− r
(see Figure 6.28)

Figure 6.28: Cylinder insribed in a cone

we conclude that h =
H(R− r)

R
. Thus the volume of the cylinder is V = V (r) =

πH

R
r2(R − r), r ∈ (0, R). From

dV

dr
=

πH

R
r(2R − 3r) and

d2V

dr2
=

2πH

R
(R − 3r) it

follows that the maximum value of the volume of the cylinder is V

(

2R

3

)

=
4πHR2

27
.

The dimensions are r =
2R

3
and h =

H

3
.

24. r =

√

10

3π
m, h =

(

5

π

√

3π

10
− 1

2

√

10

3π

)

m; V =
10

3

√

10

3π
m3.
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25. Let r be the radius of the base of the pot. Then the height of the pot is h =
250

πr2
.

The cost function is C(r) = 4πr2+
1000

r
, r > 0. The cost function has its minimum

at r =
5
3
√
π
.

26. (a) The surface area of the can is S = 2πrh + 2πr2. The amount of material

wasted is A− S = 2(4− π)r2.

(b) From V = πr2h it follows that the amount of material needed to make a can of

the given volume V is A = A(r) =
2V

r
+ 8r2. This function has its minimum

at r =
3
√
V

2
. The ratio of the height to diameter for the most economical can

is
h

r
=

4

π
.

(c) A”(r) =
4V

r3
+ 8 > 0 for r > 0.

27. r =
3
√
20, h =

14
3
√
50

. Minimize the cost function C = C(r) = 7r2π +
280π

r
.

28. From Figure 6.29 conclude that r2 = R2 − (h−R)2 = h(4R− h). Then the volume

of the cone as a function of h is given by V =
π

3
h2(4R− h). Maximize.

Figure 6.29: Cone insrribed in a sphere

29. Let P be the source power of the first party’s stereo and let x be the distance

between the person and the first party. Since the power of the second party’s stereo

is 64P , the sound level is L(x) = kPx−2 + 64kP (100 − x)−2, x ∈ (0, 100). From
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dsdLdx = 2kP
(

64
(100−x)3 −

1
x3

)

it follows that x = 20 is the only critical number for

the function L. Since for x ∈ (0, 100)

L′(x) > 0⇔ 64

(100− x)3
− 1

x3
> 0⇔ 64x3 > (100− x)3 ⇔ 4x > 100− x⇔ x > 20

the function L is strictly increasing on the interval (20, 100) and strictly decreasing

on the interval (0, 20). Therefore, L(20) is the absolute minimum.

6.9 Mean Value Theorem

1. Since x + 7 6= 0 for all x ∈ [−1, 2] it follows that the function g, as a rational

function, is continuous on the closed interval [−1, 2] and differentiable on the open

interval (−1, 2). Therefore the function g satisfies he hypothesis of the Mean Value

Theorem on the interval [−1, 2]. By the Mean Value Theorem there is c ∈ (−1, 2)
such that g′(c) =

g(2)− g(−1)
2− (−1) . Thus the question is to solve

21

(c+ 7)2
=

7

18
for c.

Hence c = −7± 3
√
6. Clearly −7− 3

√
6 < −1 and this value is rejected. From

−7 + 3
√
6 > −1⇔ 3

√
6 > 6 and − 7 + 3

√
6 < 2⇔ 3

√
6 < 9

it follows that c = −7 + 3
√
6 ∈ (−1, 2) and it is the only value that satisfies the

conclusion of the Mean Value Theorem.

2. The inequality is obviously satisfied if a = b. Let a, b ∈ R, a < b, and let f(x) = sinx,

x ∈ [a, b]. Clearly the function f is continuous on the closed interval [a, b] and

differentiable on (a, b). Thus, by the Mean value Theorem, there is c ∈ (a, b) such

that cos c =
sin b− sin a

b− a
. Since | cos c| ≤ 1 for all real numbers c it follows that

| sin b− sin a| ≤ |b− a|.

3. Let f(t) be the distance that the first horse covers from the start in time t and let

g(t) be the distance that the second horse covers from the start in time t. Let T

be time in which the two horses finish the race. It is given that f(0) = g(0) and

f(T ) = g(T ). Let F (t) = f(t) − g(t), t ∈ [0, T ]. As the difference of two position

functions, the function F is continuous on the closed interval [0, T ] and differentiable

on the open interval (0, T ). By the Mean value Theorem there is c ∈ (0, T ) such

that F ′(c) =
F (T )− F (0)

T − 0
= 0. It follows that f ′(c) = g′(c) which is the same as

to say that at the instant c the two horse have the same speed. (Note: It is also

possible to use Rolle’s theorem.)
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4. (a) [a, b]; (a, b); f ′(c)(b−a); (b) Note that all conditions of the Mean Value Theorem

are satisfied. To get the bounds use the fact that, for some c ∈ (1, 3), f(5)− f(3) =

2f ′(c). (c) Note that h(2) − h(0) = 0 and apply the Mean Value theorem for the

function h on the closed interval [0, 2].

6.10 Differential, Linear Approximation, Newton’s

Method

1. (a) Note that f(0) = 8. From f ′(x) =
3

2

√
x+ 4 it folows that f ′(0) = 3. Thus the

linearization of f at a = 0 is L(x) = 8 + 3x.

(b) For x ”close” to 0 we have that f(x) =
3

2

√

(x+ 4)3 ≈ L(x). Thus
√

(3.95)3 =

f(−0.05) ≈ L(−0.05) = 8 − 0.15 = 7.85. Since f”(x) =
3

4
√
x+ 4

> 0 we

conclude that, in the neighborhood of x = 0, the graph of the function f is

above the tangent line at x = 0. Thus L(−0.05) is an underestimate.

2. Let f(x) = x
2

3 . Then f(x) =
2

3
x−

1

3 , f(27) = 9, and f ′(27) =
2

9
. Hence the

linearization of the function f at a = 27 is L(x) = 9 +
2

9
(x − 27). It follows that

3
√
262 = f(26) ≈ L(26) = 9− 2

9
=

79

9
. (Note: MAPLE gives

79

9
≈ 8.777777778 and

3
√
262 ≈ 8.776382955.)

3. Let f(x) = x
2

3 . Then f(x) =
2

3
x−

1

3 , f(64) = 16, and f ′(64) =
1

6
. Hence the

linearization of the function f at a = 64 is L(x) = 16 +
1

6
(x − 64). It follows that

(63)2/3 = f(63) ≈ L(63) = 16− 1

6
=

95

6
. The error is close to the absolute value of

the differential |dy| = |f ′(64)∆x| = 1

6
. (Note: MAPLE gives

95

6
≈ 15.83333333 and

3
√
632 ≈ 15.83289626.)

4. Let f(x) =
√
x. Then f(x) =

1

2
√
x
, f(81) = 9, and f ′(81) =

1

18
. Hence the

linearization of the function f at a = 81 is L(x) = 9 +
1

18
(x − 81). It follows that

√
80 = f(80) ≈ L(80) = 9 − 1

18
=

161

18
. (Note: MAPLE gives

161

18
≈ 8.944444444

and
√
80 ≈ 8.944271910.)

5. The linearization of the function f at a = 5 is L(x) = 2 + 4(x− 5). Thus f(4.9) ≈
L(4.9) = 2− 0.4 = 1.6.
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6. (a) The linearization of the function g at a = 2 is L(x) = −4 + 3(x − 2). Thus

g(2.05) ≈ L(2.05) = −3.85. (b) From g”(2) =
2

3
> 0 we conclude that the function

g is concave downward at a = 2, i.e., the graph of the function lies below the tangent

line. Thus, the estimate is larger than the actual value.

7. (a) L(x) = 1− x

2
. (b)

√
0.9 ≈ 1− 9

20
=

11

20
. (c) y = −x

2
+ 1. (d) See Figure 6.30.

Figure 6.30: f(x) =
√
1− x and its tangent at x = 0

8. (a) L(x) = 1 + x. (b)
√
1.1 = f(0.05) ≈ L(0.05) = 1.05. (c) An over-estimate since

f is concave-down. MAPLE gives
√
1.1 ≈ 1.048808848.

9. (a) L(x) = 2 +
x

12
. (b)

3
√
7.95 ≈ L(−0.05) = 2 − 1

240
=

479

240
and

3
√
8.1 ≈ L(0.1) =

2+
1

120
=

243

120
. (Note: MAPLE gives

479

240
≈ 1.995833333 and 3

√
7.95 ≈ 1.995824623.

Also,
243

120
≈ 2.025000000 and 3

√
8.1 ≈ 2.008298850.)

10. (a) y =
x

9
+3. (b)

3
√
30 ≈ 1

9
+3 =

28

9
. (Note: MAPLE gives

28

9
≈ 3.111111111 and

3
√
30 ≈ 3.107232506.) (c) See Figure 6.31.

11. The linearization of the function f(x) = lnx at a = 1 is given by L(x) = x − 1.

Thus ln 0.9 ≈ L(0.9) = −0.1. (Note: MAPLE gives ln 0.9 ≈ −.1053605157.)

12. (a) L(x) = x− 1. (b) Let x = exp(−0.1). Then lnx = −0.1 ≈ L(x) = x− 1. Thus

x ≈ 0.9. (Note: MAPLE gives exp(−0.1) ≈ 0.9048374180.)
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Figure 6.31: f(x) = 3
√
27− 3x and its tangent at x = 0

13. L(x) = 10 +
1

300
(x − 1000) implies 10011/3 ≈ L(1001) =

3001

300
. (Note: MAPLE

gives
3001

300
≈ 10.00333333 and 3

√
1001 ≈ 10.00333222.)

14. (a) The linearization of the function f(x) =
√
x + 5

√
x at a = 1 is given by L(x) =

2 +
7

10
(x− 1). Thus f(1.001) ≈ L(1.001) = 2 + 0.7 · 0.001 = 2.0007. (b) Note that

the domain of the function f is the interval [0,∞). From f”(x) = −1

4
x−

3

2 − 4

25
x−

9

5

it follows that f is concave downwards on the interval (0,∞). (c) The graph of the

function is below the tangent line at a = 1, so the estimate f(1.001) ≈ 2.0007 is too

high.

15. (a) L(x) =
1

2
+

√
3

2
(x − π

6
). (b) By the Mean Value Theorem, for x >

π

6
and

some c ∈ (
π

6
, x),

f(x)− f(π6 )

x− π
6

=
sinx− 1

2

x− π
6

= f ′(c) = cos c ≤ 1. Since x − π

6
> 0,

the inequality follows. (c) From (a) and (b) it follows that, for x >
π

6
, sinx ≤

1

2
+ (x − π

6
) <

1

2
+

√
3

2
(x − π

6
) = L(x). Next, ∆f = f(x) − f(π6 ) = sinx − 1

2 <

L(x)− 1
2 =

√
3
2 (x− π

6 ) = f ′(π6 )∆x = df .

16. (b) Let f(x) = cosx− x2. Then f ′(x) = − sinx− 2x. Thus x2 = 1− cos 1− 1

− sin 1− 2
≈

0.8382184099, x2 = 0.8382184099− cos 0.8382184099− 0.83821840992

− sin 0.8382184099− 2 · 0.8382184099 ≈

0.8242418682, and x3 = 0.8242418682− cos 0.8242418682− 0.82424186822

− sin 0.8242418682− 2 · 0.8242418682 ≈
0.8241323190. (Note: MAPLE gives cos 0.8241323190 − 0.82413231902 ≈ −1.59 ·
10−8.)
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17. (b) Take f(x) = 3
√
x, x0 = 1, x1 = −2, x2 = 4, and x3 = −8. See Figure 6.32.

Figure 6.32: Newton’s Method fails: f(x) = 3
√
x and x0 = 1

18. (a) We use Newton’s Method to solve the equation x2 − 5 = 0, x > 0. From

f(x) = x2 − 5 and f ′(x) = 2x, Newton’s Method gives xn+1 = xn −
x2n − 5

2xn
=

1

2

(

xn +
5

xn

)

.

(b) A rough estimate of
√
5 gives a value that is a bit bigger than 2. Thus, take

x1 = 1.

(c) x2 = 3, x3 =
7

3
, x4 =

47
21 ≈ 2.23809. (Note: MAPLE gives

√
5 ≈ 2.23606.)

19. Let f(x) = x
1

3 . Then Newton’s method gives xn+1 = xn −
f(xn)

f ′(xn)
= xn −

x
1

3
n

1
3x
− 2

3
n

=

−2xn. So |xn+1| = 2|xn|. This implies that if x0 6= 0, |xn| = 2n|x0| → ∞ as n→∞;

Newton’s Method does not work in this case! See Figure 6.32.

20. (a) Take f(x) = x5 − k. Then f ′(x) = 5x4 and xn+1 = xn −
x5n − k

5x4n
=

4x5n + k

5x4n
=

xn
5

(

4 +
k

x5n

)

. (b) xn+1 =
5
√
k. (c) x2 = 1.85. [MAPLE gives 5

√
20 ≈ 1.820564203.]

21. From f(x) = x5 − 31 and f ′(x) = 5x4 it follows that x1 =
159

80
and x2 =

159

80
−

(

159
80

)5 − 31

5 ·
(

159
80

)4 ≈ 1.987340780. (Note: MAPLE gives 5
√
31 = 1.987340755.)
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22. (b) The question is approximate the solution of the equation F (x) = sinx − x = 0

with x0 =
π

2
. Thus x1 =

π

2
− sin π

2 − π
2

cos π
2 − 1

= 1. (Note: Clearly the solution of the

given equation is x = 0. Newton’s method with x0 =
π
2 gives x7 = 0.08518323251.)

23. x2 = 1 − −1
−22 =

21

22
. (Note: MAPLE gives

21

22
≈ 0.9545454545 and approximates

the solution of the equation as 0.9555894038)

24. (a) x1 = 2− −1
4

=
9

4
. (b) The question is to approximate a solution of the equation

f ′(x) = 0 with the initial guess x0 = 2, f ′(2) = 4, and f”(2) = 3 given. Hence

x1 = 2− 4
3 = 2

3 .

25. (a) From f(x) =
1

x
− a and f ′(x) = − 1

x2
it follows that xn+1 = xn −

1
xn

− a

− 1
x2
n

=

2xn − ax2n. (b) Note that
1

1.128
is the solution of the equation

1

x
− 1.128 = 0.

Thus x2 = 2 − 1.128 = 0.872, x3 = 2 · 0.872 − 1.128 · 0.8722 = 0.886286848, and

x4 = 0.8865247589. (Note: MAPLE gives
1

1.128
≈ 0.8865248227.)

26. x2 =
π

2
− 1− π

4

−1
2

= 2. (Note: MAPLE estimates the positive solution of the equation

sinx =
x

2
as 1.895494267. Newton’s method with the initial guess x1 =

π

2
gives

x3 ≈ 1.900995594.)

27. (a) From f ′(x) = 3(x2 − 1) it follows that the critical numbers are x = ±1. From

f(1) = 3, f(−1) = 7, lim
x→−∞

f(x) = −∞, and lim
x→∞

f(x) = ∞ it follows that f has

only one root and that root belongs to the interval (−∞,−1). From f(−2) = 3 > 0

and f(−3) = −13 < 0, by the Intermediate Value Theorem, we conclude that the

root belongs to the interval (−3,−2). (b)Let x0 = −3. Then x1 = −3 − −13
504

=

−1499

504
≈ −2.974206349 and x3 ≈ −2.447947724. It seems that Newton’s method

is working, the new iterations are inside the interval (−3,−2) where we know that

the root is. (Note: MAPLE estimates the solution of the equation x3 − 3x+ 5 = 0

as x = −2.279018786.)

28. (a) The function f is continuous on the closed interval

[

−1

2
, 0

]

and f

(

−1

2

)

=

−5

8
< 0 and f(0) = 1 > 0. By the Intermediate Value Theorem, the function f

has at least one root in the interval

(

−1

2
, 0

)

. (b) Take x1 = −1

3
. Then x2 =
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−1

3
− −

1
27 − 3 ·

(

−1
3

)

+ 1

3
(

1
9 + 1

) = −29

90
≈ −.3222222222 and x3 ≈ −.3221853550. (Note:

MAPLE estimates the solution of the equation x3+3x+1 = 0 as x = −.3221853546.)

29. (a) Take f(x) = lnx+x2−3, evaluate f(1) and f(3), and then use the Intermediate

Value Theorem. (b) Note that f ′(x) =
1

x
+2x > 0 for x ∈ (1, 3). (c) From f(1) = −2

and f ′(1) = 3 it follows that x2 =
5

3
≈ 1.66. [MAPLE gives 1.592142937 as the

solution.]

30. (a) Take f(x) = 2x − cosx, evaluate lim
x→−∞

f(x) and lim
x→∞

f(x), and then use the

Intermediate Value Theorem. (b) Note that f ′(x) = 2 + sinx > 0 for x ∈ R. (c)

From f(0) = −1 and f ′(0) = 2 it follows that x2 =
1

2
. [MAPLE gives 0.4501836113

as the solution.]

31. (a) Take f(x) = 2x− 1− sinx, evaluate lim
x→−∞

f(x) and lim
x→∞

f(x), and then use the

Intermediate Value Theorem. (b) Note that f ′(x) = 2 − cosx > 0 for x ∈ R. (c)

From f(0) = −1 and f ′(0) = 1 it follows that x2 = 1. [MAPLE gives 0.8878622116

as the solution.]

6.11 Antiderivatives and Differential Equations

1. f(x) = 2 sinx+ 2x4 − ex + 8.

2. g(x) = − cosx− x−1 − ex + π−1 + eπ

3. f(x) =
1

3
x3 + x2 + 3x− 242

3
and

f(1) = −229

3
.

4. h(1) = 2e(1− e2)− 44

3
.

5. F (z) =
1

2
ln(z2 + 9).

6. It is given that f(0) = 1 and

f ′(0) = 0. Thus f(x) = x3 + 1.

7.

∫

dx

x(1 + lnx)
= ln(1 + lnx) + C.

8. For each case compute the indefinite in-

tegral.

(a) F (x) = −1

9
(1− x)9

(b)

∫

tan2 xdx =

∫

(sec2 x − 1)dx =

tanx− x+ C

(c) F (x) =
1√
2
arctan

x√
2
+ C

(d) F (x) =
1

6
e3x +

1

2
ex + C

9. f(t) = 2et − 3 sin t+ t− 2.

10. It is given that x(0) = 10, x′(0) = v(0) = 0 and x”(t) = 12t. Hence x(t) = 2t3 + 10.
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11. (a) v(t) =
3

2
t2 + 6. (b) 4 seconds. Solve v(t) = 30.

12. (a) Let s(t) be the height of the ball after t seconds. It is given that s(0) = 0,

s′(0) = v(0) = 64 ft/sec and s”(0) = v′(0) = a(0) = −32 ft/sec2. Thus s(t) =

−16t2 + 64t = 16t(4 − t). From s(4) = 0 it follows that the ball is in the air for 4

seconds. (b) v(4) = s′(4) = −64 ft/sec2.

13. (a) From the fact that the velocity of an falling object is approximated by v(t) =

−gt + v(0) and the fact that, in the given case, v(t) = 0, we conclude that the

distance y = y(t) between the ball and the surface of the Earth at time t is given

by
dy

dt
= −gt. Hence, y = −gt2

2
+ H, where H is the height of the blimp at the

moment when the ball was dropped. At the moment when the ball hits surface we

have that 0 = −gt2

2
+H which implies that it takes t =

√

2H

g
seconds for a ball to

drop H meters. (b) v = −g ·
√

2H

g
= −10 · 7 = −70 m/sec.

14. y =
−2 cos 3x+ x3 + e3x + 1

3
+ x.

15. y = sin
(

x+
π

2

)

.

Solve
dy

√

1− y2
= dx.

16. y = tan
(

x− π

4

)

.

17. y = 4ex − 1.

18. x(t) = −3(4t− 7)−3 + 4

19. y = ln(x+ e2).

20. y = 2− e−t.

21. (a) y =
3

2
sin 2x− 1

4
exp(−4x) + 5

4
. (b) F (x) =

1

2
ln(2x+ 1) + C.

22. Let x be the number of towels sold per week at the price p = p(x). Let C = C(x)

be the cost of manufacturing x towels. It is given that
dC

dx
= 0.15 CAN/towel

and
dp

dx
= −0.10

50
CAN/towel. Hence C(x) = 0.15x + a and p(x) = −0.10x

50
+ b,

for some constants a and b (in CAN). Then the profit is given by P = P (x) =

Revenue − Cost = x · p(x) − C(x) = −0.10x2

50
+ bx− 0.15x − a. The quantity that

maximizes revenue is x = 1000 towels and it must be a solution of the equation
dP

dx
= −0.10x

25
+ b− 0.15 = 0. Hence −0.10 · 1000

25
+ b− 0.15 = 0 and b = 4.15 CAN.

The price that maximizes the profit is p = −0.10 · 1000
50

+ 4.15 = 2.15 CAN.


